User's Manual for NOTHOPACK:

A Growth and Yield Simulator for Nothofagus Second Growth Forests

Prepared by

Salvador A. Gezan, Paulo C. Moreno, Sebastian Palmas and Alicia Ortega

User's Manual for NOTHOPACK: A Growth and Yield Simulator for Nothofagus Second Growth Forests

Bibliographical Reference

Gezan, S.A., Moreno, P.C., Palmas, S., and A. Ortega. 2021. NOTHOPACK: A Growth and Yield Simulator for Nothofagus Second Growth Forests. Version 1.0. Universidad Austral de Chile, Valdivia, Chile.

Authors Email Addresses

Salvador A. Gezan forestats.sg@gmail.com Paulo C. Moreno paulo.moreno@ciep.cl Sebastian Palmas palmasforest@gmail.com Alicia Ortega aortega@uach.cl

Companion Resources

This R library and associated documentation can be accessed at: https://github.com/sgezan

Acknowledgements

Initial funding for this research come from FONDEF (Chile), grant D97I1065. P. Moreno and S. Palmas were funded by scholarships and grants from the School of Forest Resources and Conservation, IFAS, University of Florida, USA. Several institutions collaborated with data, time, and resources to the success of this project, including: INFOR (Hans Grosse, Luis Barrales), Universidad Austral (Pablo Donoso, Cristian Estades), and personal from CONAF, Inversines Cranefield Chile Ltda., Forestal Cholguan S.A., Forestal Mininco S.A., Forestal Tornagaleones S.A. and Forestal Valdivia S.A., all companies that supported use from 1997 to 2000.

The authors greatly acknowledge the team of students, technicians and faculty that helped on the establishment and measurement of the majority of the plots used in this study, including Marcelo Farias, Ernesto Venegas, Soledad Munoz, Christian Salas-Eljatib, to name just a few of our helpers. A critical consultant for this project was Dr. James Fleweeling. In addition, we want to thank our current institutions VSN International (United Kingdom), CIEP (Chile), and Universidad Austral (Chile) for allowing us to dedicate time to this exciting package.

Contents

1	Introduction to NOTHOPACK	3
	1.1 Overview	3
	1.2 Getting Started	5
2	Reading a Stand or a Tree-list: input_module	6
	2.1 Stand-level Information	6
	2.2 Generating a Diameter Distribution	8
	2.3 Processing an Inventory Plot	9
3	Running a Stand-level Simulation: core-module	13
	3.1 Simple Stand-Level Simulation	13
	3.2 Stand-level Simulation with the generation of a diameter distribution	15
4	Running a Tree-level Simulation	17
5	Compatibility of Stand- and Tree-level Simulations	20
6	Implementing a Thinning	22
	6.1 Thinning at the stand-level	22
	6.2 Thinning at the tree-level	24
7	Closing Remarks	27

Introduction to NOTHOPACK

1.1 Overview

NOTHOPACK is a growth model (G&Y) simulator for second-growth forests of *Nothofagus* obliqua (roble), *N. alpina* (raulí), and *N. dombeyi* (coihue), which are among the most important native mixed forests in Chile. They form the RORACO forest type that is present approximately between the 36° and 42° S latitudes in both the Chilean Andes and the coastal mountain range with some fragments in Argentina. At the present, the RORACO forest type covers 1.96 million hectares, around 10% of the native forested area of Chile.

This simulator is the product of a large FONDEF project (D97I1065) that started in 1996 at the Universidad Austral under the direction of Dr. Alicia Ortega, financed by the Chilean Government. Under this 3-year project, several efforts were done to collect data for RORACO from previously studies. However, the largest effort was the development of two stratified sampling networks with temporary and permanent plots established across the complete range of this forest type in Chile. Efforts to build this simulator have continued over the years mainly at the Universidad Austral (Chile) and at the University of Florida (United States). Hence, NOTHOPACK is the result of combining all these resources and efforts into a single product, that has been put togehter into an R library to be used by foresters, and researchers to facilitate and improve the management and sustainability of this important Chilean forest type.

This G&Y model has several properties, but the main ones are:

- Inventory processing
- Whole-stand level simulation
- Individual-tree level simulation
- Compatibility (stand-tree) simulation
- Thinning simulation

In this manual we present some of the structure of NOTHOPACK and we illustrate its use with several examples.

NOTHOPACK

NOTHOPACK is a tool that is provided as it is. We have done many efforts to use the datasets available as much as possible, and on cases with limited information, we have considered some simplifying assumptions. However, NOTHOPACK will not necessarely be free of errors or, in some cases, inconsistencies. We believe this G&Y should be *dynamic* and improved as more information becomes available (particularly remeasurement of permanent plots), and as our understanding of this natural resources improves. For this reason, we consider NOTHOPACK as a research tool, and we are happy to recieve your comments and contributions to make this G&Y better and more useful to all users; hence, feel free to contact any of the author with your suggestions and recommendations.

1.2 Getting Started

NOTHOPACK is an R package that can be downloaded from https://github.com/sgezan/Nothopack. In order to install NOTHOPACK you need:

```
install.packages("devtools")
devtools::install_github("sgezan/Nothopack")
```

Alternatively, if you have the zip file associated with this package, you can install it by using the command:

```
install.packages(path, repos = NULL, type = "source")
```

where **path** is the location and name of the ZIP file to install, for example: 'C:/Desktop/Nothopack_1.0.0.zip'.

Anohter option is to install NOTHOPACK directly from RStudio by first going to the menu: >Tools/Install Packages..., in the Install From select

'Package Archive File (.zip; tar.gz)', and then you will have to search for the location of the file on your computer and select it. Finally, you just need to click on Install.

Once installed, to load this library in R you run the command:

```
library(Nothopack)
```

Now you are ready to use it! A good way to get started is to look at the help directly from this library, you can type for example:

```
help(core_module)
```

In the next sections we will present how to run some of your analyses for an array of different examples and conditions. In these cases, we will use the console in RStudio to perform all analyses.

Reading a Stand or a Tree-list: input_module

One of the most important modules from NOTHOPACK is input_module(), which process input information required for all current or future stand- or tree-level calculations, or their simulations. NOTHOPACK accepts as input information from both stand- or tree-level. This function is always the first step to start performing your simulations, but also you can use it to complete missing information for a given plot. For example, by providing age and dominant height, you will be supplied with the corresponding site index.

The module input_module() generates a new object with several elements that are critical input to be used for downstream simulations or calculations in other modules. However, it can be used on itself as it perform required calculations that help to have a full numerical description of the stand under evaluation.

2.1 Stand-level Information

The basic code to process stand-level information for input_module() is:

input_module(ZONE, AD, AF, HD, SI, N, BA, type = "stand")

This function requires several inputs that specific characteristics of the stand. The first element, ZONE identifies the corresponding growth zone of the plot for the RORACO forest type. This map can be found in Figure 1. These growth zones were defined according to edaphoclimatic variables together with the actual distribution of this forest type.

AD corresponds to the dominant age (in years) of the stand. This is defined as the age of the dominant trees measured at breast height. Note that this definition is considered as it will close to the age of establishment of these stands after a disruption. AF is the final dominant age (in years) for the requested simulation. You can also supply site index, SI (m) or dominant height, HD (m). These are calculated based on the height of 100 tallest trees in a stand. N and BA are vectors of tree density (trees/ha) and basal are (m²/ha) of the stand,

respectively, where the order of the cohorts are: Rauli, Roble, Coigue and other species.

Finally, we indicate the type of input information (and also simulation) requested, which in this case corresponds to 'stand', as this is the level of data we are providing in N and BA. There are other input arguments, but we will discuss those later as they are needed for other operations.

In order to illustrate this function, we will consider stand-level information for the stand presented in table below.

Table 2.1: Plot information for a stand dominated by Rauli located in growth zone 1, that is 28 years old (dominant age) and with a dominant height of 28.0 m.

Code	Cohort	BA	Ν
1	Rauli	36.5	464
2	Roble	2.8	23
3	Coigue	1.6	16
4	Other	2.4	48

The above plot data can be read by NOTHOPACK as:

Note that in the above case, we did not specified SI. After running input_module(), the object plot.inf has a list of elements of interest, which can be called with the command:

ls(plot.inf)

##	[1]	"AD"	"AF"	"area"	"ATHIN"
##	[5]	"BARp"	"comptype"	"data.sim"	"ddiam"
##	[9]	"DDist"	"DOM.SP"	"FT.thin"	"HD"
##	[13]	"IADBH_model"	"NHA_model"	"PBAN"	"PNHAN"
##	[17]	"QD_ba"	"SDIP"	"SI"	"sp.table"
##	[21]	"T_model"	"tree.list"	"type"	"V_model"
##	[25]	"ZONE"			

The function input_module() completes all required calculations (including stand-level volume estimation). Hence, this function can be considered as an inventory generator providing all relevant information for the year of interest based on those supplied stand-level parameters. For example, we can access to the stand table, by using:

plot.inf\$sp.table

##		SPECIES	Ν	BA	QD	VTHA
##	1	1	464	36.5	31.648	252.147
##	2	2	23	2.8	39.370	19.343
##	3	3	16	1.6	35.682	11.053
##	4	4	48	2.4	25.231	16.579
##	5	0	551	43.3	31.632	299.122

In addition, we have the elements from plot.inf\$data.sim that provide with the required summary to use later on the simulations. Note from here, that there are several stand parameters, some of the important ones are: SI = 13.48 and SDIP = 65.02, which corresponds to site index, obtained from the dominant age and height, and the stand-density index (%) based on the dominant specie, respectively. In addition, the dominant specie. DOM.SP is identified as 1 corresponding to Rauli.

Another important element from this list i the that has important summary information is the object data.sim that summarize all information of the stand, and this is the table from collecting the simulated data, that in this case corresponds to only AGE = 28, as there are no simulations carried out yet.

```
plot.inf$data.sim
```

AGE HD NHA QD BA NHAN NHA99 BAN BA99 PBAN ## 1 28 18.5 551 31.632 43.3 503 48 40.9 2.4 0.94457 SI ## PNHAN SDIP VTOT ## 1 0.91289 13.48 65.019 299.12

2.2 Generating a Diameter Distribution

The above stand-level plot data can be further extended to generate a diameter distribution. NOTHOPACK has incorporated equations based on the method of parameter recovery to generate these diameter distributions based on the work by Gezan and Moreno (200X). This function generates a diameter distribution for each of the *Nothofagus* cohorts, and is later used to calculate stand parameters for each of their diameter classes.

As an example, lets use the above code by adding ddiam = TRUE as showm below

The diameter distribution for all cohorts is stored in plot.inf\$DDist. For instance, the diameter distribution combined for all species can be printed using:

plot.inf\$DDist[5, ,]

##		DBH_11	DBH_ul	D_class	H_class	N	BA	VT
##	1	5	10	7.5	3.5576	19.232	0.11008	0.09354
##	2	10	15	12.5	8.6628	30.061	0.42982	1.13454
##	3	15	20	17.5	12.1946	56.713	1.52117	5.88615
##	4	20	25	22.5	14.5828	86.577	3.78640	17.57876
##	5	25	30	27.5	16.1997	105.575	6.86413	35.27888
##	6	30	35	32.5	17.2943	103.655	9.39696	51.37775
##	7	35	40	37.5	18.0413	81.939	9.88879	56.24896
##	8	40	45	42.5	18.5594	51.936	8.06141	47.01127
##	9	45	50	47.5	19.1043	11.941	2.35457	13.44148
##	10	50	55	52.5	19.9028	2.898	0.73133	3.80970
##	11	55	60	57.5	19.7090	0.477	0.15535	0.79974
##	12	60	65	62.5	0.0000	0.000	0.00000	0.00000
##	13	65	70	67.5	0.0000	0.000	0.00000	0.00000
##	14	70	75	72.5	0.0000	0.000	0.00000	0.00000
##	15	75	80	77.5	0.0000	0.000	0.00000	0.00000
##	16	80	85	82.5	0.0000	0.000	0.00000	0.00000
##	17	85	90	87.5	0.0000	0.000	0.00000	0.00000
##	18	90	95	92.5	0.0000	0.000	0.00000	0.00000

This diameter distribution is presented by diameter classes of 5 cm, and you can see the average height, number of trees, basal area and total volume for each of the classes. It is important to indicate that the total volume in this table, based on the column VT corresponds to 232.66, which differs from the one reported earlier of 299.12, this occurs because for the diameter distribution volumes are calculated using the available taper equations, instead of the stand-level volume equations.

If there is interest to obtain the tables for other species, the number 5 from above can be replaced. The levels considered here are: 1 : Rauli, 2 : Roble, 3 : Coigue, 4 : Other, 5 : All.

2.3 Processing an Inventory Plot

One of the main practical uses of NOTHOPACK is to process a RORACO inventory plot. This is done using the same function input_module() and then allowing this module to perform all required calculations. However, in this case instead of using stand-level input we provide to this function inventory data as a complete tree-list, which is supplied to R as a data.frame with the following columns: *ID*: unique tree ID number, *SPECIES*: species code (1 : Rauli, 2 : Roble, 3 : Coigue, 4 : Others), DBH: diameter at breast height (in cm), *HT*: total tree height (in m) and *SS*: sociological status of each tree in the stand. The column for *HT* can have some missing values and these will be completed by fitting a height-diameter model to the available data. For *SS*, if they are missing they will be estimated proportional to the basal area of larger trees (BAL, m²). Note that *SS* is considered as a continuous

variable based on the usual classes: 1 : *Dominant*, 2 : *Codominant*, 3 : *Intermediate*, 4 : *Surpressed*; therefore, larger values are associated with trees with increased crown competition.

As indicated, the inventory plot provided to NOTHOPACK with a tree-list will process the information to obtain all stand parameters and completes all missing information (e.g., SI) based on tree- or stand-level data. In addition, there will be estimation of volume for each of the trees on the list, and a stand table will be provided with this summary. The idea is that this output can be used directly to plan forest management such as thinning or other opperations.

In addition, as part of NOTHOPACK the output from input_module() with tree-level data will be the main input for further tree-level simulations, if required.

The library NOTHOPACK provides with an example of a tree-list that we will use for illustration. This tree-list example is named $plot_example$ and it contains 46 trees and from an inventory plot with an area of 500 m². The structure of this data frame and the first six rows are shown below.

```
str(plot_example)
```

##	'data.frame':	46 obs. of 6 variables:
##	\$ ID : int	; 1 2 3 4 5 6 7 8 9 10
##	<pre>\$ SPECIES: int</pre>	; 222222222
##	\$ DBH : num	n 24 23.6 35.5 15.9 13.5
##	\$ HT : num	NA NA 17.5 8.64 NA NA 15 NA NA NA
##	\$ SS : log	gi NA NA NA NA NA NA
##	\$ FT : log	gi NA NA NA NA NA NA

head(plot_example)

##		ID	SPECIES	DBH	HT	SS	FT
##	1	1	2	24.00	NA	NA	NA
##	2	2	2	23.60	NA	NA	NA
##	3	3	2	35.47	17.50	NA	NA
##	4	4	2	15.90	8.64	NA	NA
##	5	5	2	13.50	NA	NA	NA
##	6	6	2	23.60	NA	NA	NA

This tree-list can be entered into $input_module()$ by specifying 'type = tree' together with the specification of the data frame under 'tree.list = plot_example. Note that when using a tree-level list to specify the stand, there is no need to specify the number of trees (N), basal area (BA) or the dominant height (HD) as these will be calculated from the tree list. In addition, calculations of the individual tree volume, together with a stand table and a diameter distribution will be automatically calculated and stored in the respective object.


```
tree_inv <- input_module(ZONE = 2, AD = 28, AF = 28, area = 500,
    type = "tree", tree.list = plot_example, T_model = 1)
## Warning: Some tree heights were estimated using model fitted
## with data (across all species)
## Warning: Verify that these are good estimates of total
## height.
## Warning: Sociological Status (SS) was completed for all (or
## some) trees in plot if missing.
## Warning: Dominant height (HD) missing, using the one
## obtained from the HT tree data
```

As seen in the above warning messages, this function also completes missing information from the inventory (total height and sociological status as seen here).

After running the above code, we have an updated tree-list table that is stored in tree_inv\$tree.list. The first six rows are presented below

```
head(tree_inv$tree.list)
```

##		ID	SPECIES	DBH	HT	SS	FΤ	DBHO	VIND
##	1	1	2	24.00	16.827	3.1140	20	24.00	0.285632
##	2	2	2	23.60	16.739	3.1791	20	23.60	0.275382
##	3	3	2	35.47	17.500	1.4784	20	35.47	0.594898
##	4	4	2	15.90	8.640	3.8351	20	15.90	0.064188
##	5	5	2	13.50	13.203	3.9304	20	13.50	0.074701
##	6	6	2	23.60	16.739	3.2442	20	23.60	0.275382

There are a few additional columns added corresponding to DBH0, which is used to keep track of the individual tree diameter increments, and VIND, which is the current individual stem volumen for each tree.

The function input_module() will also automatically calculate summary statistics by species in a similar way as shown before when we used the stand-level input.

```
##
     SPECIES
                        BA
                                QD
                                      VTHA
               Ν
                  1.08580 15.1794
## 1
              60
                                      6.964
           1
## 2
           2 780 38.91528 25.2039 245.218
                  0.00000 0.0000
## 3
           3
               0
                                     0.000
## 4
           4 80
                  0.31314 7.0596
                                      1.490
## 5
           0 920 40.31422 23.6206 253.672
```

In addition, we can request the diameter distribution from the complete stand or by each species. Here the code is:

tree_inv\$sp.table


```
# Overall diameter distribution
tree_inv$DDist[5, , ]
# Diameter distribution for N. alpina (1)
tree_inv$DDist[1, , ]
```

For example, for the all trees, but only a few of the diameter classes this is:

```
tree_inv$DDist[5, 1:8, ]
```

##		DBH_11	DBH_ul	D_class	H_class	Ν	BA	VT
##	1	5	10	7.5	7.76	80	0.31	1.490
##	2	10	15	12.5	12.63	120	1.54	7.931
##	3	15	20	17.5	14.60	140	3.20	18.279
##	4	20	25	22.5	17.30	220	8.71	56.801
##	5	25	30	27.5	17.40	180	10.52	67.563
##	6	30	35	32.5	17.64	100	7.64	48.147
##	7	35	40	37.5	18.49	80	8.39	53.461
##	8	40	45	42.5	0.00	0	0.00	0.000

The above diameter distribution can be plotted; for example, by showing the basal area and number of trees, as presented in the figure below.

Finally, the stand object also stores additional stand summary information such as quadratic diameter (QD), basal area of *Nothofagus* (BAN), and site index (SI) in a table object. All this information will be used for reports or in downstream simulations.

tree_inv\$data.sim

HD NHA QD BAN **BA99** ## AGE BA NHAN NHA99 ## 1 28 18.394 920 23.621 40.314 840 80 40.001 0.31314 PBAN SI SDIP ## PNHAN VTOT ## 1 0.99223 0.91304 13.11 91.37 253.67

Running a Stand-level Simulation: core-module

In this section we will review a couple of examples on how to run a stand-level simulation. First we will show an example on how to run a simple stand-level simulation and in the second example, we will perform another stand-level simulation but this will be complemented with the generation of a diameter distribution.

3.1 Simple Stand-Level Simulation

Probably the most common use of NOTHOPACK is related to performing a simple stand-level simulation, in this case well consider a case without thinning, no generation of diameter distribution.

The following simulation function will simulate annual stand-level parameters from the speficied initial stand age AD to the final age AF, together with other critical information such as ZONE and HD (or SI) and the stand table from the conditions of interest. An example is shown below:

We started with the function input_module() that prepares the stand. We will first, review the simulation summary data with

stand.input\$data.sim

AGE HD NHA BA NHAN NHA99 BAN BA99 PBAN ## QD ## 1 28 18.5 551 31.632 43.3 503 48 40.9 2.4 0.94457 ## PNHAN SI SDIP VTOT ## 1 0.91289 13.9 65.019 299.12 and the initial stand table by species is

and the initial stand table by spec

stand.input\$sp.table

##		SPECIES	Ν	BA	QD	VTHA
##	1	1	464	36.5	31.648	252.147
##	2	2	23	2.8	39.370	19.343
##	3	3	16	1.6	35.682	11.053
##	4	4	48	2.4	25.231	16.579
##	5	0	551	43.3	31.632	299.122

The function that runs the simulation is core_module(). As part of NOTHOPACK logic, all of the necessary information for the simulations is inside the stand object created by input_module(), and hence core_module() will take this object, in our example stand.input, as the starting point for the simulation. Now, we are ready to perform our simulations with:

sims.stand <- core_module(input = stand.input)</pre>

The object created by core_module() (in this case named sims.stand) is a list with all of the simulation results. To begin with, we can present the summary table by specie at the simulation age AD of 33 years.

sims.stand\$sp.table

##		SPECIES	Ν	BA	QD	VTHA
##	1	1	459.274	44.1455	34.983	342.972
##	2	2	22.766	3.3865	43.520	26.310
##	3	3	15.837	1.9351	39.443	15.034
##	4	4	43.750	2.4339	26.614	18.909
##	5	0	541.626	51.9010	34.930	403.225

And, a table with the summary stand-level parameters by year that can be used to assess patterns and calculate rates. This is obtained as:

sims.stand\$data.sim

AGE HD NHA QD ΒA NHAN NHA99 BAN ## 1 28 18.50 551.00 31.632 43.300 503.00 48.000 40.900 29 19.02 549.45 32.300 45.021 502.28 47.163 42.614 ## 2 ## 3 30 19.52 547.72 32.963 46.743 501.41 46.319 44.329 31 20.02 545.84 33.623 48.464 500.37 45.468 46.043 ## 4 ## 5 32 20.51 543.81 34.278 50.184 499.20 44.612 47.756 33 20.98 541.63 34.930 51.901 497.88 43.750 49.467 ## 6 ## **BA99** PBAN PNHAN SI SDIP VTOT ## 1 2.4000 0.94457 0.91289 13.9 65.019 299.12 ## 2 2.4072 0.94653 0.91416 13.9 66.777 319.19 ## 3 2.4142 0.94835 0.91543 13.9 68.505 339.52 ## 4 2.4210 0.95005 0.91670 13.9 70.205 360.44 ## 5 2.4275 0.95163 0.91796 13.9 71.874 381.75 ## 6 2.4339 0.95311 0.91923 13.9 73.514 403.23

Note that in this table, you can see the changes on parameters for the complete stand (*e.g.* BA) and for all *Nothofagus* species aggregated (*e.g.* BAN).

In the current simulation presented before, all internal prediction equations only create simulations at the stand-level, without any dissagreggation. For example, in this case we do not have a diameters distribution as this was not requested. This is because the default behavior, specified in input_module(), is to not generate a diameter distribution (*i.e.* ddiam=FALSE)

3.2 Stand-level Simulation with the generation of a diameter distribution

As indicated earlier, it is possible to generate a diameter distribution. This is obtained based on the method of parameter recovery using stand-level parameters. In NOTHOPACK this is generated for each year of simulation by specifying in input_module() that a diameter distribution is desired (*i.e.* ddiam = TRUE), this is shown in the following code

```
stand.input <- input_module(ZONE = 2, AD = 28, HD = 18.5, AF = 33,
N = N, BA = BA, type = "stand", ddiam = TRUE, T_model = 1,
comp = FALSE)
```

Note that, to show the available simulation options, we also changed some of the settings of this simulation. In this case, the selected taper model from all zones $(T_model=2)$ is changed to zone specific $(T_model=1)$.

Then, we can call core_module() and for illustration we are showing the distribution for basal area for ages 28 and 33 in our example.

sims.stand <- core_module(input = stand.input)</pre>

Running a Tree-level Simulation

Tree-level simulations offer greater details on the simulated stand as in this case for NOTHOPACK diameter and height increment of each tree is modelled in an annual basis. In this section, we will show an example to run this type of simulation using the same data that was presented before as part of the processing inventory, namely:

str(plot_example)

```
## 'data.frame':
                    46 obs. of 6 variables:
##
    $ ID
             : int
                    1 2 3 4 5 6 7 8 9 10 ...
    $ SPECIES: int
                    2 2 2 2 2 2 2 2 2 2 2 . . .
##
##
    $ DBH
                    24 23.6 35.5 15.9 13.5 ...
             : num
    $ HT
                    NA NA 17.5 8.64 NA NA 15 NA NA NA ...
##
             : num
##
    $ SS
             : logi
                    NA NA NA NA NA NA ...
    $ FT
##
             : logi
                     NA NA NA NA NA NA ...
```

```
head(plot_example)
```

##		ID	SPECIES	DBH	HT	SS	FΤ
##	1	1	2	24.00	NA	NA	NA
##	2	2	2	23.60	NA	NA	NA
##	3	3	2	35.47	17.50	NA	NA
##	4	4	2	15.90	8.64	NA	NA
##	5	5	2	13.50	NA	NA	NA
##	6	6	2	23.60	NA	NA	NA

To start we need to create an stand object using input_module. We will simulate from an initial age of 28 to 33. Note that input_module requires the specification type='tree' to allow a tree-level simulation. In this example we will use taper model 2. The code used is:

Another key aspect is the use of tree.list where we specify the inventory data for the plot to simulate, and this has to have the specified column names.

Now, we can proceed to perform the tree-level simulation to AF = 33, with

```
tree.sim <- core_module(input = plot.input)</pre>
```

After the simulation, the tree list from the new object is the *grown* tree list from the original plot. We can, for instance review the growth prediction for any specific tree in the stand.

```
# tree #1: initial characteristics
head(plot.input$tree.list)
```

0415
0420
3748
1964
3372
0420

```
# tree #1: final characteristics
head(tree.sim$tree.list)
```

##		ID	SPECIES	DBH	HT	SS	FT	DBHO	VIND
##	1	1	2	25.320	18.957	3.1140	19.054	25.072	0.367066
##	2	2	2	24.883	18.844	3.1791	19.035	24.641	0.353844
##	3	3	2	38.245	20.020	1.4784	19.784	37.715	0.766181
##	4	4	2	16.670	10.076	3.8351	18.749	16.525	0.081961
##	5	5	2	14.151	14.315	3.9304	18.723	14.029	0.094096
##	6	6	2	24.861	18.834	3.2442	18.998	24.624	0.353103

It is clear from the above table the changes and growth in each of the trees. An important element is the column FT this is the expansion factor that originally is 20 trees/ha, and due to mortality, this has lowered to values between 18 and 20; therefore representing the change in number of trees. It is important to note that NOTHOPACK does not consider ingrowth in the simulations.

We can now look at the change in stand-level conditions for these simulations between initial and final age.

plot.input\$sp.table

##		SPECIES	Ν	BA	QD	VTHA
##	1	1	60	1.08580	15.1794	6.836
##	2	2	780	38.91528	25.2039	245.444
##	3	3	0	0.00000	0.0000	0.000
##	4	4	80	0.31314	7.0596	1.040
##	5	0	920	40.31422	23.6206	253.320

tree.sim\$sp.	table
---------------	-------

##		SPECIES	Ν	BA	QD	VTHA
##	1	1	56.283	1.12620	15.9616	7.759
##	2	2	746.713	42.61596	26.9566	304.010
##	3	3	0.000	0.00000	0.0000	0.000
##	4	4	74.768	0.32299	7.4164	1.069
##	5	0	877.763	44.06516	25.2822	312.838

Recall that SPECIES = 0 represents the total. We can now compare the histogram of the diameter distribution at AD (green) and then AF (blue) as shown below:

Diameter Distribution all species

DBH Class (cm)

Compatibility of Stand- and Tree-level Simulations

Often combining stand-level simulations with tree-level simulations offers increased predictability. The reason is because stand-level equations are more accurate on the long term but they do not have the granularity required that tree-level models have; however, the later are often only accurate for a few years (5-10) and then they suffer from important bias. For this reason, compatibility models that grow trees using the tree-level model but then modify them to match the paramters produced by stand-level models is always a good option.

NOTHOPACK has incorporated this option under two compatibility algorithms: proportional yield (PY) and proportional growth (PG). In this section, we will simulate the same stand considered earlier under plot_example with the compatibility method, and we will compare their results with the previous simulation. As expected, this needs to start with some plot inventory, and as before, it all starts with the input_model but here we will specify type='comp' to request compatibility, and then we run the core_module.

We will be running and comparing the two compatibility algorithms: proportional yield and proportional growth, as shown below:

```
# Compatibility simulation with proportional yield (PY)
plot.py <- input_module(ZONE = 1, AD = 28, AF = 38, type = "comp",
    area = 500, tree.list = plot_example, T_model = 2, comptype = "PY")
comp.py.sim <- core_module(input = plot.py)
# Compatibility simulation with proportional growth (PG)
plot.pg <- input_module(ZONE = 1, AD = 28, AF = 38, type = "comp",
    area = 500, tree.list = plot_example, T_model = 2, comptype = "PG")
comp.pg.sim <- core_module(input = plot.pg)</pre>
```

We will only see the simulations for PY, as the difference between both algorithms is minimal. Lets start by looking at the tree list at AF = 33, followed by the specie summary table:


```
head(comp.py.sim$tree.list)
```

##		ID	SPECIES	DBH	HT	SS	FT	DBHO	VIND
##	1	1	2	28.681	20.865	3.1140	17.879	28.238	0.50721
##	2	2	2	28.180	20.728	3.1791	17.869	27.746	0.48874
##	3	3	2	44.219	22.334	1.4784	19.513	43.368	1.08983
##	4	4	2	18.782	11.176	3.8351	17.254	18.511	0.11509
##	5	5	2	15.950	15.029	3.9304	17.248	15.717	0.12386
##	6	6	2	28.124	20.704	3.2442	17.760	27.698	0.48647

comp.py.sim\$sp.table

##		SPECIES	N	BA	QD	VTHA
##	1	1	51.879	1.32883	18.0589	9.665
##	2	2	707.361	53.43660	31.0137	406.851
##	3	3	0.000	0.00000	0.0000	0.000
##	4	4	68.669	0.37787	8.3703	1.231
##	5	0	827.910	55.14329	29.1212	417.747

When these results are compared to the tree simulations from the previous chapter, so differences are clear, but recall that in compatibility the stand-level equations are the ones that are used for the compatibility.

Implementing a Thinning

Thinning is a critical component of management of *Nothofagus* second-growth forests. The simulator NOTHOPACK does include a module to allow for thinning. For the stand-level thinning, no additional information was available of thinning results, hence, the original stand-level models are considered without any specific modifications. Therefore, these results should be taken with care, particularly for this type of simulations.

In contrast, for the thinning done using tree-level simulations, there is more robust information. Here, individual tree growth is based on the use of tree-level equations that respond to changes on the levels of tree-to-tree competition, and not on original information generated by operational thinning. However, they are more flexible to model changes on levels of competition at this high granularity. In any case, results from this module should be considered with care, and we consider that reasonable simulations will be obtained with levels no higher than 5-10% of basal area removal from thinning.

NOTHOPACK uses, as part of the input data, the option ATHIN as part of input_module. This option will specify that age of the thinning (on years), and it will require a few additional parameters depending if the simulation is done at the stand- or tree-level.

6.1 Thinning at the stand-level

In this example we simulate an stand with two different types of thinning strategies: a) with an equal thinning rate for every class and b) with a reduction of basal area to 90%.

The thinning specifications/parameters are all specified in the input_module as part of the input. For stand-level, thinning can be defined as a percentage of total basal area to be removed using BARp and the thinning age is specified with ATHIN. Note that this thinning age can be anywere betwee AD and AF, as the simulator will stop at the required age to perform the thinning.

Below, we specify a stand using their stand-level information. In this case the initial age of simulation is from 28 years until 45 years, with a thinning implemented at age 30. Note that

the basal area to remove is BARp = 10, and that this thinning is not changing the quadratic diameter; hence, $Qd_ba = 1$, which is the ration of quadratic diameter of the stand before against after thinning.

```
BA <- c(1.09, 38.92, 0, 0.31)
N <- c(60, 780, 0, 80)
stand.input <- input_module(ZONE = 2, AD = 28, AF = 45, ATHIN = 30,
    HD = 18.4, N = N, BA = BA, type = "stand", ddiam = FALSE,
    BARp = 50, QD_ba = 1)
# Simulating stand
sims.thin <- core_module(input = stand.input)</pre>
```

The object sims.thin stores information for all simulated years as well as a pre-thinning and a post-thinning stand-level characteristics at the thinning age (in this case 30). A few years are shown below:

```
sims.thin$data.sim[1:8, ]
```

```
HD
                  NHA
                          QD
                                       NHAN
                                             NHA99
##
     AGE.
                                  BA
                                                      BAN
## 1
      28 18.40 920.00 23.622 40.320 840.00 80.000 40.010
## 2
      29 18.99 911.65 24.180 41.862 833.15 78.502 41.551
## 3
      30 19.56 903.05 24.735 43.393 826.06 76.989 43.081
      30 19.56 451.53 24.735 21.696 413.03 38.494 21.541
## 4
      31 20.11 451.92 25.223 22.580 413.78 38.137 22.424
## 5
      32 20.65 452.19 25.705 23.467 414.42 37.765 23.310
## 6
## 7
      33 21.18 452.34 26.184 24.357 414.96 37.380 24.200
      34 21.69 452.37 26.659 25.250 415.39 36.980 25.092
## 8
##
        BA99
                PBAN
                                 SI
                                      SDIP
                                             VTOT
                       PNHAN
## 1 0.31000 0.99231 0.91304 13.12 91.380 278.78
## 2 0.31097 0.99257 0.91389 13.12 93.580 298.28
## 3 0.31190 0.99281 0.91475 13.12 95.715 318.02
## 4 0.15595 0.99281 0.91475 13.12 47.857 169.53
## 5 0.15640 0.99307 0.91561 13.12 49.237 181.05
## 6 0.15684 0.99332 0.91648 13.12 50.603 192.85
## 7 0.15726 0.99354 0.91736 13.12 51.955 204.94
## 8 0.15767 0.99376 0.91825 13.12 53.293 217.18
```

Clearly, there are two records for age 30, one before thinning and another after. The other elements are changing according to the thinning specifications, and from this point, the stand follows a different trajectory. For illustration, we visualize the plot dynamics of the thinned plot for basal area below.

6.2 Thinning at the tree-level

As with stand-level, all thinning specifications/parameters must be indicated in the input_module. In this case, a vector of thinning decision for each tree in a parallel ways as the that provided in the tree.list by including a vector, of the same length, under the option FT.thin. This vectro has a 0 if the tree is to be removed and 1 is if going to be kept after thinning. This additional flexibility allows for any type of thinning desired (below, above, or by specific species). As before, it is also required to indicate the thinning age with ATHIN.

In this example we will implement a tree-level thinning, and only for simplicity, we

The thinning vector should be the length of the tree.list and should have values of 0 to trees to be thinned and 1 for trees to be kept in the stand.

In this example, the thinning vector is named FT.thin and we specify a group of six trees with a value of 0; hence, they will the removed at age 30, when the thinning is planned.

```
FT.thin <- rep(1, length(plot_example$FT))
FT.thin[c(8, 11, 17, 31, 33, 38)] <- 0</pre>
```

The above vector is then added the simulation presented below:

```
# Processing the plot-level data
plot.input <- input_module(ZONE = 1, AD = 28, AF = 40, type = "tree",
    ATHIN = 30, FT.thin = FT.thin, area = 500, tree.list = plot_example,
    T_model = 2)
# Simulating to age AF by tree-level with thinning
sims.tree.thin <- core_module(input = plot.input)
## [1] "Tree thinning resulted in QD_ba = 0.99"</pre>
```

```
## [1] "Tree thinning resulted in BARp = 11.34"
```


The simulation returns messages with information about the results of the thinning. In this case, the proposed tree-level thinning vector, FT.thin, resulted in a reduction of 11.34% of the basal and a ratio of quadratic diameter of stand before against after thinning of 0.99.

The final tree-list with thinning is presented below, and the user can verify that the residual trees are there, but in contrast with a simulation without thinning these present larger diameters (note that IDs and FT values will be slightly different).

```
head(sims.tree.thin$tree.list, 8)
```

##		ID	SPECIES	DBH	HT	SS	FT	DBHO	VIND
##	1	1	2	26.873	21.557	3.1140	18.126	26.668	0.47302
##	2	2	2	26.399	21.411	3.1791	18.112	26.198	0.45538
##	3	3	2	41.519	23.152	1.4784	19.524	41.073	1.03462
##	4	4	2	17.582	11.656	3.8351	17.572	17.462	0.10804
##	5	5	2	14.921	15.406	3.9304	17.506	14.820	0.11308
##	6	6	2	26.341	21.383	3.2442	18.009	26.146	0.45303
##	7	7	2	28.458	19.902	2.9754	18.279	28.233	0.47320
##	8	9	2	18.931	18.202	3.7741	17.669	18.799	0.21128

As we did with the stand-level simulations, we can also see the information for all simulated years as well as a pre-thinning and a post-thinning stand-level characteristics at the thinning age below:

```
sims.tree.thin$data.sim[1:8, ]
```

##		AGE		HD	NH	ΗA		QD		B.	A	NHA	N 1	NHA99		BAN
##	1	28	18.3	394	920.0	00	23.6	521	40	.31	48	40.0	0 80	0.000	40.	001
##	2	29	19.0	030	911.6	55	23.9	966	41	.12	48	32.6	9 78	3.961	40.	808
##	3	30	19.6	350	903.2	24	24.3	304	41	.90	38	25.3	2 7	7.916	41.	585
##	4	30	19.6	650	785.6	50	24.5	537	37	.14	97	07.6	9 7	7.916	36.	831
##	5	31	20.2	260	780.1	14	24.8	363	37	.87	57	02.9	9 7	7.144	37.	554
##	6	32	20.8	360	774.5	59	25.1	182	38	.57	86	98.2	3 70	5.362	38.	254
##	7	33	21.4	150	768.9	98	25.4	195	39	. 25	76	93.4	1 7	5.573	38.	930
##	8	34	22.0	030	763.3	31	25.8	303	39	.91	46	88.5	3 74	1.777	39.	585
##		E	3A99		PBAN		PNH	AN S	SI	S	DIP	V	тот			
##	1	0.31	L314	0.9	9223	0.	9130	04 1	13	91.3	370	253	.32			
##	2	0.31	1576	0.9	9232	0.	9133	39 1	13	92.4	413	265	.54			
##	3	0.31	1803	0.9	9241	0.	9137	74 1	13	93.3	389	277	.57			
##	4	0.31	1803	0.9	9144	0.	9008	32 1	13	82.3	330	245	.20			
##	5	0.32	2117	0.9	9152	0.	9011	12 1	13	83.3	291	256	.16			
##	6	0.32	2402	0.9	9160	0.	9014	12 1	13	84.3	201	267	.04			
##	7	0.32	2658	0.9	9168	0.	9017	72 1	13	85.0	062	277	.81			
##	8	0.32	2888	0.9	9176	0.	9020	04 1	13	85.8	876	288	.46			

Closing Remarks

Some of the capabilities of the growth model (G&Y) simulator for *Nothofagus* second-growth forests NOTHOPACK was presented in this document. However, there are more details that were not presented here but they can be of interest for the user. For example, there are several taper equations incorporated into this model that can be used to estimate volume for different products of interest; and these are completemented by functions that calculate stem diameter of height for specific trees.

In addition, there are several parametrized height-diameter equations for different zones that require stand-level parameters that can be used to estimate missing heights with better precision than local height-diameter functions.

We also have allowed the user to select among a variaty of different models for different aspects. For example, there are several mortality models that can be considered, and it is expected that some will provide better results than others, depending on the specific conditions. Similarly, we have allowed for different stand-level volume equations, and individual annual increment in DBH models. In all cases, we recommend that the user tests different options and, with the use of real information, verifies and selects the model that better represents their data. We have selected a few options by default, but given the variable nature of the system, and the wide geographical range of conditions for these forests, we suspect some models will be more accurate.

Finally, we like to indicate that this G&Y simulators is a dynamic tool that was produced with limited filed observation and considering a few biological, and simplifying, assumptions. As more understanding of these forests is generated and more field information and trials are available, these models can, and should, be modified and improved. It is for that reason that we have considered this library NOTHOPACK as open source available for all scientific and forest community.

